Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 170: 1-10, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689896

RESUMO

OBJECTIVES: Immune checkpoint inhibitors (ICIs) improved outcomes in non-small cell lung cancer (NSCLC) patients. We report the predictive utility of human leukocyte antigen class I (HLA-I) diversity and tumor mutational burden (TMB) by comprehensive next-generation sequencing. METHODS: 126 patients were included. TMB high was defined as ≥ 10 nonsynonymous mutations/Mb. Patients exhibit high HLA-I diversity if at least one locus was in the upper 15th percentile for DNA alignment scores. RESULTS: No difference in response rate (RR; 44.4% versus 30.9%; p = 0.1741) or 6-month survival rate (SR; 75.6% versus 77.8%; p = 0.7765) was noted between HLA-I high diversity and low diversity patients. HLA-I high diversity patients did significantly more often exhibit durable clinical benefit (DCB), defined as response or stable disease lasting minimally 6 months (64.4% [29/45] versus 43.2% [35/81]; p = 0.0223). TMB high patients exhibited higher RR (49.1% versus 25.4%; p = 0.0084) and SR 6 months after start ICI (85.5% versus 70.4%; p = 0.0468) than TMB low patients. The proportion of patients with DCB, did not differ significantly between TMB high and low subgroups (60.0% [33/55] versus 42.3% [30/71]; p = 0.0755). Patients with combined dual high TMB and HLA-I diversity had higher RR (63.2% versus 22.2%; p = 0.0033), but SR at 6 months did not differ significantly (84.2% versus 64,4%; p = 0.1536). A significantly higher rate of patients experienced DCB in dual high compared to the dual low group (73.7% [14/19] versus 35.6% [16/45]; p = 0.0052). Triple positive patients (high TMB and HLA-I diversity and PD-L1 positive) had higher RR (63.6% versus 0.0%; p = 0.0047) and SR at 6 months (100% versus 66.7%; p = 0.0378) compared to triple-negative patients. CONCLUSION: HLA-I diversity was able to predict durable clinical benefit in ICI treated NSCLC patients, but failed to confirm as a predictor of response or survival. TMB confirmed as a predictive biomarker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígenos HLA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
2.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626061

RESUMO

The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort.

3.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205782

RESUMO

Multiple myeloma (MM), or Kahler's disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low-intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression.

4.
Nature ; 561(7721): 63-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158707

RESUMO

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Assuntos
Células Endoteliais/enzimologia , Células Endoteliais/patologia , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Neovascularização Patológica , Actinas/metabolismo , Animais , Movimento Celular , Células Endoteliais/metabolismo , Feminino , Glutamato-Amônia Ligase/deficiência , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoilação , Camundongos , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Fibras de Estresse/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
5.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146488

RESUMO

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animais , Proliferação de Células , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo
6.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29853619

RESUMO

Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.


Assuntos
Capilares/anormalidades , Movimento Celular , Células Endoteliais/metabolismo , Veia Retiniana/anormalidades , Malformações Vasculares/embriologia , Proteína cdc42 de Ligação ao GTP/deficiência , Animais , Capilares/embriologia , Polaridade Celular/genética , Células Endoteliais/patologia , Camundongos , Camundongos Knockout , Pseudópodes/genética , Pseudópodes/metabolismo , Veia Retiniana/embriologia , Malformações Vasculares/genética , Malformações Vasculares/patologia
7.
EMBO J ; 36(16): 2334-2352, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659375

RESUMO

Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.


Assuntos
Asparagina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Glutamina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Meios de Cultura/química , Células Endoteliais/metabolismo , Glutaminase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Redes e Vias Metabólicas , Neovascularização Patológica
8.
Cancer Cell ; 30(6): 968-985, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27866851

RESUMO

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


Assuntos
Cisplatino/administração & dosagem , Células Epiteliais/metabolismo , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Animais , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Tratamento Farmacológico , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Tamoxifeno/farmacologia
9.
Nat Commun ; 7: 12240, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436424

RESUMO

During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.


Assuntos
Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Simulação por Computador , Técnicas de Silenciamento de Genes , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/farmacologia , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Piridinas/farmacologia , Pirróis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Cell Metab ; 23(2): 280-91, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26774962

RESUMO

The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Reprogramação Celular , Deleção de Genes , Neurônios/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/complicações , Carbono/metabolismo , Reprogramação Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intraventriculares , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacologia , Oxirredução/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fenótipo , Pró-Colágeno-Prolina Dioxigenase/deficiência , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/complicações
11.
Cell Rep ; 12(6): 992-1005, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235614

RESUMO

Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.


Assuntos
Fibroblastos/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Trends Endocrinol Metab ; 24(12): 589-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075830

RESUMO

Vessel sprouting by endothelial cells (ECs) during angiogenesis relies on a navigating tip cell and on proliferating stalk cells that elongate the shaft. To date, only genetic signals have been shown to regulate vessel sprouting. However, emerging evidence indicates that the angiogenic switch also requires a metabolic switch. Indeed, angiogenic signals not only induce a change in EC metabolism but this metabolic adaptation also co-determines vessel sprouting. The glycolytic activator PFKFB3 regulates stalk cell proliferation and renders ECs more competitive to reach the tip. We discuss the emerging link between angiogenesis and EC metabolism during the various stages of vessel sprouting, focusing only on genetic signals for which an effect on EC metabolism has been documented.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Glicólise/genética , Glicólise/fisiologia , Humanos , Neovascularização Fisiológica/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
13.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911327

RESUMO

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Assuntos
Células Endoteliais/metabolismo , Glicólise , Neovascularização Fisiológica , Fosfofrutoquinase-2/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/citologia , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/genética , Pseudópodes/metabolismo , Peixe-Zebra
14.
Exp Cell Res ; 319(9): 1240-6, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23415766

RESUMO

Understanding the fundamental organisational principles underlying the complex and multilayered process of angiogenesis is the mutual aim of both the experimental and theoretical angiogenesis communities. Surprisingly, these two fields have in the past developed in near total segregation, with neither fully benefiting from the other. However, times are changing and here we report on the new direction that angiogenesis research is taking, where from well-integrated collaborations spring new surprises, experimental predictions and research avenues. We show that several successful ongoing collaborations exist in the angiogenesis field and analyse what aspects of their approaches led them to achieve novel and impactful biological insight. We conclude that there are common elements we can learn from for the future, and provide a list of guidelines to building a successful collaborative venture. Specifically, we find that a near symbiosis of computation with experimentation reaps the most impactful results by close cyclical feedback and communication between the two disciplines resulting in continual refinement of models, experimental directions and our understanding. We discuss high impact examples of predictive modelling from the wider, more established integrated scientific domains and conclude that the angiogenesis community can do nothing but benefit from joining this brave new, integrated world.


Assuntos
Simulação por Computador , Modelos Biológicos , Neovascularização Fisiológica , Animais , Neoplasias da Mama/irrigação sanguínea , Pesquisa Empírica , Feminino , Humanos , Estudos Interdisciplinares , Neovascularização Patológica/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...